Search results for "Substituent effect"

showing 10 items of 20 documents

On the relations between aromaticity and substituent effect

2019

Aromaticity/aromatic and substituent/substituent effects belong to the most commonly used terms in organic chemistry and related fields. The quantitative description of aromaticity is based on energetic, geometric (e.g., HOMA), magnetic (e.g., NICS) and reactivity criteria, as well as the properties of the electronic structure (e.g., FLU). The substituent effect can be described using either traditional Hammett-type substituent constants or characteristics based on quantum-chemistry. For this purpose, the energies of properly designed homodesmotic reactions and electron density distribution are used. In the first case, a descriptor named SESE (energy stabilizing the substituent effect) is o…

chemistry.chemical_classificationElectronic structure010405 organic chemistrySubstituentMolecular modelingAromaticityElectronic structure010402 general chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciences0104 chemical scienceschemistry.chemical_compoundSubstituent effectCharge of the substituent active regionchemistryComputational chemistryIntramolecular forceSubstituent effect stabilization energyReactivity (chemistry)Physical and Theoretical ChemistryBenzeneAromatic hydrocarbonStructural Chemistry
researchProduct

Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids

2016

This work describes a substrate-directed fluorination of some highly functionalized cyclopentane derivatives. The cyclic products incorporating CH2 F or CHF2 moieties in their structure have been synthesized from diexo- or diendo-norbornene β-amino acids following a stereocontrolled strategy. The synthetic study was based on an oxidative transformation of the ring carbon-carbon double bond of the norbornene β-amino acids, followed by transformation of the resulted "all cis" and "trans" diformyl intermediates by fluorination with "chemodifferentiation".

molecular diversitycyclizationDouble bondHalogenationHydrocarbons FluorinatedStereochemistryMolecular Conformationchemistry.chemical_elementCyclopentanes010402 general chemistryRing (chemistry)Crystallography X-Ray01 natural sciencesBiochemistrychemistry.chemical_compoundfluorineCyclopentaneta116Norbornenechemistry.chemical_classificationamino acidssubstituent effects010405 organic chemistryOrganic ChemistrySubstrate (chemistry)StereoisomerismGeneral Chemistry0104 chemical sciencesAmino acidchemistryFluorineOxidation-ReductionChemistry: An Asian Journal
researchProduct

Dual Substituent Parameter Modeling of Theoretical, NMR and IR Spectral Data of 5-Substituted Indole-2,3-diones

2002

Correlations of AM1 and PM3 theoretical data, 13C-NMR substituent chemical shifts (13C-SCS) and IR carbonyl group wave numbers [ν(C3â•ÂO)] were studied using dual substituent parameter (DSP) models for 5-substituted indole-2,3-diones. For the C7 atom a reverse substituent effect attributed to extended À-polarization was observed. On the other hand, the DSP approaches for the C3 atom showed normal substituent effects with some contribution of reverse effect supported strongly by 13C-SCS correlations. In the ν(C3â•ÂO) and p(C3â•ÂO) DSP correlations the field effect contribution predominates over the resonance effect, which justifies the using of earlier suggested vibrational cou…

StereochemistrySubstituentPharmaceutical ScienceField effectArticleAnalytical Chemistry3-dioneslcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistry5-Substituted indole-23-dionesDrug DiscoveryAtomAM1 and PM3 theoretical dataπ-polarizationWavenumberPhysical and Theoretical ChemistrySpectral dataIndole testreverse substituent effectChemistryChemical shiftOrganic ChemistryIR and NMR data DSP correlationsChemistry (miscellaneous)5-Substituted indole-2Molecular MedicinePhysical chemistryÀ-polarizationRotational–vibrational couplingMolecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
researchProduct

Most of the field/inductive substituent effect works through the bonds

2019

AbstractAn application of the quantum chemical modeling allowed to investigate the nature of the field/inductive substituent effect (SE). For this purpose, series of X-tert-butyl···tert-butane (TTX) complexes (where X = NMe2, NH2, OH, OMe, Me, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, NO2, NO) were studied. A starting distance between central carbon atoms in substituted and unsubstituted fragments of TTX, dC1–C4, was the same as the distance C1–C4 in X-substituted bicyclo[2.2.2]octane (BCO), where the SE acts both via bonds and via space. A strength of interaction between substituted and unsubstituted components of TTX was described by deformation and interaction energies. The substituent …

Electronic structureMolecular modelField (physics)SubstituentMolecular modelingElectronic structure010402 general chemistry01 natural sciencesCatalysisInorganic Chemistrychemistry.chemical_compoundAlicyclic compoundPhysical and Theoretical ChemistryInductive effectOctanechemistry.chemical_classificationBicyclic molecule010405 organic chemistryOrganic ChemistryField/inductive substituent effectsDeformation energy0104 chemical sciencesComputer Science ApplicationsCrystallographyComputational Theory and MathematicschemistryInteraction energy charge of the substituent active regionJournal of Molecular Modeling
researchProduct

Classical and reverse substituent effects in meta- and para-substituted nitrobenzene derivatives

2017

Electron-accepting properties of the nitro group were studied in a series of meta- and para-X-substituted nitrobenzene derivatives (X = NMe2, NH2, OH, OMe, CH3, H, F, Cl, CF3, CN, CHO, COMe, CONH2, COOH, COCl, NO2, NO). For this purpose Hammett-like approaches were applied based on quantum chemistry modeling; the B3LYP/6-311++ G(d,p) method was used. The substituent effect (SE) was characterized by the mutually interrelated descriptors: the charge of the substituent active region, cSAR(X), and substituent effect stabilization energy, SESE, as well as substituent constants, σ. Classical SE is realized by dependences of the structural parameters of the nitro group (ONO angle and NO bond lengt…

substituent effectsMolecular modelmolecular modeling010405 organic chemistryDinitrobenzeneStereochemistrySubstituentelectronic structure010402 general chemistryCondensed Matter Physics01 natural sciencesQuantum chemistry0104 chemical sciencesNitroanilineBond lengthNitrobenzenechemistry.chemical_compoundchemistrysubstituent effect stabilization energyNitroPhysical and Theoretical Chemistrycharge of the substituent active regionStructural Chemistry
researchProduct

Studies in organic mass spectrometry. Part 23. Role of the aroyl group on the competitive fragmentation reactions of the molecular ion of aroylanilid…

1999

The 70 eV and mass-analysed ion kinetic energy (MIKE) spectra of some thiophenecarboxanilides and benzoylanilides (1–10) have been compared in order to investigate the role of the aroyl (or heteroaroyl) moiety on the abundance of the competitive fragmentation reactions occurring in their molecular ions (amide–bond cleavage and phenol radical ion formation). It has been shown that the electron ionisation induced decompositions with high (70 eV) and low (MIKE) internal energy excess are qualitatively similar, but remarkable quantitative differences have been observed that can be accounted for in terms of the different effectiveness in the transmission of electronic effects of substituents in …

substituent effectsChemistryrearrangement processesPolyatomic ionAnalytical chemistryaroylanilidesMass spectrometryPhotochemistryelectron ionisation; positive ions; ion chemistry; aroylanilides; substituent effects; rearrangement processesIonchemistry.chemical_compoundRadical ionFragmentation (mass spectrometry)positive ionsThiopheneElectronic effectMoietyion chemistryelectron ionisationSpectroscopy
researchProduct

Substituent effects of nitro group in cyclic compounds

2020

AbstractNumerous studies on nitro group properties are associated with its high electron-withdrawing ability, by means of both resonance and inductive effect. The substituent effect of the nitro group may be well described using either traditional substituent constants or characteristics based on quantum chemistry, i.e., cSAR, SESE, and pEDA/sEDA models. Interestingly, the cSAR descriptor allows to describe the electron-attracting properties of the nitro group regardless of the position and the type of system. Analysis of classical and reverse substituent effects of the nitro group in various systems indicates strong pi-electron interactions with electron-donating substituents due to the re…

education.field_of_study010405 organic chemistryPopulationSubstituentMolecular modeling010402 general chemistryCondensed Matter PhysicsRing (chemistry)Resonance (chemistry)01 natural sciencesMedicinal chemistryQuantum chemistry0104 chemical sciencesNitro groupchemistry.chemical_compoundDelocalized electronCharge of the substituent active regionchemistrySigma and pi electron structureSubstituent effectsNitroSubstituent effect stabilization energyPhysical and Theoretical ChemistryeducationInductive effectStructural Chemistry
researchProduct

The substituent effect of π-electron delocalization in N-methylamino-nitropyridine derivatives: crystal structure and DFT calculations

2020

AbstractThe crystal and molecular structures of 3-(N-methylamino)-2-nitropyridine, 5-(N-methylamino)-2-nitropyridine and 2-(N-methylamino)-5-nitropyridine have been characterized by X-ray diffraction. To perform conformational analysis, the geometries of the compounds as well as their conformers and rotamers were optimized at the B3LYP/6-311++G(3df,3pd) level. The resulting data were used to analyze the π-electron delocalization effect in relation to the methylamino group rotation in ortho-, meta- and para-substitution positions. Quantitative aromaticity indices were calculated based on which we estimated the electronic structures of the analyzed compounds. The substituent effect of the met…

010405 organic chemistryAromaticityCrystal structureSubstituentAromaticityCrystal structure010402 general chemistryCondensed Matter PhysicsRing (chemistry)DFT calculations01 natural sciences0104 chemical sciencesCrystallographychemistry.chemical_compoundDelocalized electronSubstituent effectchemistryCharge of the substituent active regionIntramolecular forcePyridineSubstituent effect stabilization energyPhysical and Theoretical ChemistryConformational isomerismStructural Chemistry
researchProduct

On the rearrangement of some Z-arylhydrazones of 3-benzoyl-5-phenylisoxazoles into 2-aryl-4-phenacyl-2H-1,2,3-triazoles: a kinetic study of the subst…

2015

Abstract The rearrangement of eight new Z -arylhydrazones of 3-benzoyl-5-phenylisoxazoles ( 3d – k ) into the relevant 2-aryl-4-phenacyl-2 H -1,2,3-triazoles ( 4d – k ) in dioxane/water solution at different proton concentrations has been quantitatively studied in a wide temperature range (293–333 K). The data collected together with some our previous ones on compounds 3a – c have allowed a deep study of the substituent effects on the course of the rearrangement, thus increasing our knowledge on the Boulton–Katritzky reactions in isoxazole derivatives and on the temperature effects on free energy relationships.

ProtonArylOrganic ChemistryMononuclear rearrangement of heterocycles substituent effect phenylisoxazolesSubstituentSettore CHIM/06 - Chimica OrganicaAtmospheric temperature rangePhenacylKinetic energyBiochemistryMedicinal chemistrychemistry.chemical_compoundchemistryDrug DiscoveryOrganic chemistryIsoxazoleBoulton-Katritzky reactions Isoxazoles Triazoles Ring-into-ring conversion Effect of substituents Free energy relationships
researchProduct

Influence of the Substituent on Selective Photocatalytic Oxidation of Aromatic Compounds in Aqueous TiO2 Suspensions.

2006

Experimental results are reported showing that the photocatalytic oxidation of aromatic compounds containing an electron-donor group (EDG) gives rise mainly to ortho- and para-monohydroxy derivatives while in the presence of an electron-withdrawing group (EWG) all the monohydroxy derivatives are obtained.

Settore CHIM/03 - Chimica Generale e InorganicaAqueous solutionMetals and AlloysSubstituenthot electronGeneral ChemistryGeneral MedicineMedicinal chemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundSubstituent effectchemistryPhotocatalysis; TiO2; Substituent effect; OxydationGroup (periodic table)PhotocatalystsMaterials ChemistryCeramics and CompositesPhotocatalysisTiO2Organic chemistryOxydationPhotocatalysisChemInform
researchProduct